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Abstract. Time-domain methods for blind separation of audio signals
are preferred due to their lower demand for available data and the avoid-
ance of the permutation problem. However, their computational demands
increase rapidly with the length of separating filters due to the simulta-
neous growth of the dimension of an observation space. We propose, in
this paper, a general framework that allows the time-domain methods
to compute separating filters of theoretically infinite length without in-
creasing the dimension. Based on this framework, we derive a generalized
version of the time-domain method of Koldovský and Tichavský (2008).
For instance, it is demonstrated that its performance might be improved
by 4dB of SIR using the Laguerre filter bank.

1 Introduction

Blind Audio Source Separation (BASS) aims at separatingunknown audio sources,
which are mixed in an acoustical environment according to the convolutive model.
The observed mixed signals are

xi(n) =
d∑

j=1

Mij−1∑

τ=0

hij(τ)sj(n− τ) =
d∑

j=1

{hij � sj}(n), i = 1, . . . ,m, (1)

where � denotes the convolution,m is the number of microphones, s1(n), . . . , sd(n)
are the original sources, and hij are source-microphone impulse responses each of
length Mij . The linear separation consists in finding de-mixing filters that sep-
arate original sources in its outputs. Since many methods for finding the filters
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formally assume instantaneous mixtures, i.e., Mij = 1 for all i, j, the convolutive
model needs to be transformed. This can be done either in the frequency or time
domain.

Time-domain approaches, addressed in this paper, consist in decomposing the
observation matrix defined as [1]

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(N1) . . . . . . x1(N2)
x1(N1 − 1) . . . . . . x1(N2 − 1)

...
...

...
...

x1(N1 − L + 1) . . . . . . x1(N2 − L + 1)
x2(N1) . . . . . . x2(N2)

x2(N1 − 1) . . . . . . x2(N2 − 1)
...

...
...

...
xm(N1 − L + 1) . . . . . . xm(N2 − L + 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where N stands for the number of available samples, and 1 ≤ N1 < N2 ≤ N
determine the segment of data used for computations, and L is a free parameter.
The decomposition of X is done by multiplying it by a matrix W. This way FIR
filters of the length L whose elements correspond to rows of W are applied to
the mixed signals x1(n), . . . , xm(n). This is due to the structure of X given by
(2). The subspace of dimension mL in �N2−N1+1 spanned by rows of X will be
called the observation space.

It is desired to decompose the observation space into linear subspaces where
each of them represents one original signal. It can be done either by some in-
dependent subspace analysis (ISA) technique or by an independent component
analysis (ICA) method, which is followed by the clustering of the components
[2]. Performance of some ISA and ICA methods was studied in [12]. Some other
methods utilize block-Sylvester structure of A = W−1 [1,4]. Computational
complexity of all these methods increases most ideally with L3, which means
that L cannot be too large. On the other hand, the frequency response of or-
dinary rooms is typically several hundreds of taps [3]. Therefore, longer filters
would be desired.

Longer separating filters can be obtained by the subband-based separation
[3,5]. In this paper, however, we propose to increase the length of the separating
filters by changing the definition of the observation space. For a given set of
invertible filters fi,�, X is defined as

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{f1,1 � x1}(N1) . . . . . . {f1,1 � x1}(N2)
{f1,2 � x1}(N1) . . . . . . {f1,2 � x1}(N2)

...
...

...
...

{f1,L � x1}(N1) . . . . . . {f1,L � x1}(N2)
{f2,1 � x2}(N1) . . . . . . {f2,1 � x2}(N2)

...
...

...
...

...
...

...
...

{fm,L � xm}(N1) . . . . . . {fm,L � xm}(N2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)
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Linear combinations of rows of X defined in this way correspond to outputs of
MIMO filters with a generalized feed-forward structure introduced in [8], where
the filters fi,� are referred to as eigenmodes. Note that if fi,� realizes backward
time-shift by �− 1 samples, i.e. fi,�(n) = δ(n− �+ 1), where δ(n) stands for the
unit impuls function, the construction of X given by (3) coincides with (2)1.

The proposed definition (3) extends the class of filters that are applied to
signals x1(n), . . . , xm(n) when multiplying X by W. Time-domain BSS methods
searching W via ICA can thus apply long separating (even IIR) filters without
increasing L.

When X is defined by (2), A or W can be assumed to have a special structure
(e.g. block-Sylvester) [1,2,4]. In general, the structure does not exist if X is
defined according to (3). It is necessary to apply a separating algorithm that
does not rely on the special structure - such as the method from [6,7], referred
to as T-ABCD2. An extension of T-ABCD working with X defined through
(3) is proposed in the following section. Then, a practical version of T-ABCD
using Laguerre eigenmodes is proposed in Section 3, and its performance is
demonstrated by Section 4. In Section 5, we present a semi-blind approach to
show another potential of the generalized definition of X.

2 Generalized T-ABCD

2.1 The Original Version of T-ABCD

Following the minimal distortion principle, T-ABCD estimates microphone re-
sponses of the original signals, si

k(n) = {hik � sk}(n), i = 1, . . . ,m, which are
signals measured on microphones when the kth source sounds solo. First, we
briefly describe the original version of T-ABCD from [6] that proceeds in four
main steps.

1. Form the observation matrix X as in (2).
2. Decompose X into independent components, i.e., compute the M ×M de-

composing matrix W by an ICA algorithm, M = mL.
3. Group the components (rows of) C = WX into clusters so that each cluster

contains components that correspond to the same original source.
4. For each cluster, use only components of the cluster to estimate microphone

responses of a source corresponding to the cluster.

The details of the fourth step are as follows. For the kth cluster,

Ŝk = W−1diag[λk
1 , . . . , λ

k
M ]WX = W−1diag[λk

1 , . . . , λ
k
M ]C, (4)

1 A further practical generalization is if different number of eigenmodes were consid-
ered for a given i, that is fi,� for � = 1, . . . , Li. For simplicity, we will consider the
case L1 = · · · = Lm = L only.

2 Time-domain Audio sources Blind separation based on the Complete Decomposition
of the observation space.
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where λk
1 , . . . , λ

k
M denote positive weights from [0, 1], reflecting degrees of affil-

iation of components to the kth cluster. Ideally, Ŝk is equal to Sk, which is a
matrix defined in the same way as X but consists of the contribution of only the
kth source, which is, of the time-shifted copies of the responses s1k(n), . . . , sm

k (n).
Note that since xi(n) = si

1(n) + · · · + si
d(n), it holds that X = S1 + · · · + Sd.

Taking the structure of Sk (the same as (2)) into account, the microphone
responses are estimated from Ŝk as

ŝi
k(n) =

1
L

L∑

�=1

ψk,(i−1)L+�(n+ �− 1), (5)

where ψk,p(n) is equal to the (p, n)th element of Ŝk. To clarify, note that ψk,p(n)
provides an estimate of si

k(n − � + 1) for p = (i − 1)L + �. See [6] for further
details on the method3.

2.2 Generalization

In the first step of generalized T-ABCD, X is constructed according to (3). Fur-
ther steps of the method are the same as described above up to the reconstruction
formula given by (5), which is given as follows.

Let f−1
i,� be the inverse of the filter fi,�. As ψk,p(n) defined by the (p, n)th

element of Ŝk, p = (i − 1)L + �, provides an estimate of {fi,� � s
i
k}(n), the

microphone responses of the kth separated source are estimated as

ŝi
k(n) =

1
L

L∑

�=1

{f−1
i,� � ψk,(i−1)L+�}(n). (6)

Obviously, (6) coincides with (5) if fi,�(n) = δ(n− �+ 1).

3 T-ABCD Using Laguerre Filters

In [9,10], Laguerre filters having the feed-forward structure [8] were shown to
yield better separation than the ordinary FIR filters, apparently, thanks to in-
creased effective length of their impulse response for certain values of a parameter
μ. These filters can be applied within T-ABCD when the eigenmodes fi,� in (3)
(now we may omit the first index i) are defined through their transfer functions
F� recursively as

F1(z) = 1, (7)

F2(z) =
μz−1

1 − (1 − μ)z−1
, (8)

Fn(z) = Fn−1(z)G(z), n = 3, . . . , L, (9)

3 Note the missing factor 1/L in the formula (9) in [6].
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Fig. 1. Original signals used in experiments

where

G(z) =
(μ− 1) + z−1

1 − (1 − μ)z−1
, (10)

and μ takes values from (0, 2). Note that f2 is either a low-pass filter (for 0 <
μ < 1) or a high-pass filter (for 1 < μ < 2), and g is an all-pass filter.

The construction of X through Laguerre eigenmodes embodies (2) as a special
case, because for μ = 1, F2(z) = G(z) = z−1, that is f2(n) = g(n) = δ(n − 1),
consequently, f�(d) = δ(n − L + 1). This is the only case where the Laguerre
filters are FIR of the length L. For μ �= 1, the filters are IIR.

The effective length of the Laguerre filters denoted by L∗ is defined as the
minimum length needed to capture 90% of the total energy contained in the
impulse response. For the Laguerre filters it approximately holds that [10]

L∗ = (1 + 0.4|μ− 1| log10 L)L/μ. (11)

We can see that L∗ > L for μ < 1 and vice versa. From here on, we will refer to
T-ABCD as the variant proposed in this section as it encompasses the original
algorithm when μ = 1.

4 Experiments with Real-World Recordings

The proposed algorithm will be tested in the SiSEC evaluation campaign. The
experiments in this paper examine mixtures of Hiroshi Sawada’s original signals,
which are available on the Internet4. The data are a male and a female utterance
of the length 7 s recorded at the sampling rate 8kHz; see Fig. 1. For evaluations,
we use two standard measures as in [13]: Signal-to-Interference Ratio (SIR) and
Signal-to-Distortion Ratio (SDR). The SIR determines the ratio of energies of
the desired signal and the interference in the separated signal. The SDR provides
a supplementary criterion of SIR that reflects the difference between the desired
and the estimated signal in the mean-square sense.

The performance of T-ABCD defined in the previous section was tested by
separating Sawada’s recordings of the original signals that were recorded in a
room with the reverberation time of 130ms using two closely spaced microphones
and two loudspeakers placed at a distance of 1.2 m. T-ABCD was applied to
4 http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html

http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html
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Fig. 2. Results of separation of Sawada’s real-world recordings

separate the recordings with L = 20 and varying μ. Two seconds of the data
were used for computations of separating filters, i.e., N1 = 1 and N2 = 16000.
The ICA algorithm applied within T-ABCD is BGSEP from [11] that is based
on the approximate joint diagonalization of covariance matrices computed on
blocks of X (we consider blocks of 300 samples). The weighting parameter α for
determining weights in (4) was set to 1. A similar setting was used in [6].

For comparison, minimum mean-square error (MMSE) solutions were com-
puted as the best approximations of known responses of signals in the observa-
tion space defined by X. It means that the MMSE solutions achieve the best
SDR for given L and thus provide an experimental performance bound [10].

Fig. 2 shows resulting values of SIR and SDR averaged over both separated
responses of both signals. The potential of Laguerre filters to improve the sep-
aration for μ < 1 is demonstrated by the performance of the MMSE separator
both in terms of SIR and SDR; similar results were observed in experiments in
[10]. T-ABCD improves its performance when μ approaches 0.1 as well, with the
optimum at around μ = 0.2. For μ very close to zero (μ < 0.1), the performance
usually becomes unstable. Compared to the case μ = 1, where X coincides with
(2) and the separating filters are FIR, the separation is improved by 4dB of
SIR and 2dB of SDR. This is achieved at essentially the same computational
time (about 1.1 s in Matlab version 7.9 running on a PC, 2.6GHz, 3GB RAM),
because the value of μ does not change the dimension of X.

5 Semi-Blind Separation

The goal of this section is to provide another definition example of eigenmodes
in (3) that utilizes prior information about the mixing system, otherwise known
as the semi-blind approach. Consider the general m = 2 and d = 2 scenario

x1(n) = {h11 � s1}(n) + {h12 � s2}(n) (12)
x2(n) = {h21 � s1}(n) + {h22 � s2}(n). (13)
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Fig. 3. The microphone-source impulse response h11(n)

Almost perfect separation of this mixture can be achieved when taking L = 2
and defining f11 = b � h22, f12 = −b � h21, f21 = −b � h12, and f22 = b � h11,
where b = (h11 � h22 − h21 � h12)−1 assuming that the inversion exists. A trivial
verification shows that combinations of signals {f11 � x1}(n) + {f21 � x2}(n) and
{f12 � x1}(n) + {f22 � x2}(n) are independent, because they are equal to the
original sources s1 and s2, respectively. If these combinations were unknown
(e.g. when f11, . . . , f22 were known up to a multiple by a constant), we could
identify them blindly as independent components of X that would be defined
through (3) with the eigenmodes f11, . . . , f22. The dimension of such X is only
4, so the computation of ICA is very fast.

Additionally, we can define f11, . . . , f22 with an arbitrary b, e.g., b(n) = δ(n).
Note that b only affects the spectra of independent components of X.

To demonstrate this, we recorded impulse responses of the length 300ms in
a lecture room and mixed the original signals from Fig. 1 according to (12)-(13).
An example of the recorded impulse response h11(n) is shown in Fig. 3.

The observation matrix X was constructed as described above with b(n) =
δ(n). BGSEP was applied to X using only the first second of the recordings
(N1 = 1, N2 = 8000) and yielded randomly permuted independent components
of X. Signal-to-Interference ratios of two of four components were, respectively,
28.3 dB subject to the male speech and 18.4 dB subject to the female speech,
SIRs that represent a highly effective separation.

In comparison, MMSE solutions obtained by optimum FIR filters of the length
20 (L = 20 and μ = 1) achieve only 4.8 dB of average SIR subject to the male
speech and 6.8 dB subject to the female speech. Although the independent com-
ponents have different coloration then the original signals (they are close to twice
reverberated original signals by the room impulse response), the example reveals
the great potential of the general construction of X in theory. For instance, it
is indicative of the possibility to tailor the eigenmodes fi,� to room acoustics if
the impulse response of the room can be measured with sufficient accuracy.

6 Conclusions

We have proposed a general construction of the observation matrix X that al-
lows for the application of long separating filters in time-domain BASS methods
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without increasing the dimension of the observation space. This approach pre-
serves the computational burden as it mostly depends on that dimension. The
T-ABCD method was generalized in this way, and its version using Laguerre
separating filters was shown to improve the separation with μ < 1, i.e., when
the effective length of separating filters L∗ is increased compared to ordinary
FIR filters with the length L. Future research can be focused on optimizing the
choice of the eigenmodes.
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